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Abstract

BACKGROUND: Sclerotinia stem rot, caused by Sclerotinia sclerotiorum, threatens winter rapeseed (Brassica napus) production
in Germany, with potential yield losses of up to 30%. The current SkleroPro model provides regional Sclerotinia risk assess-
ments but has shown declining predictive accuracy. This study aims to enhance SkleroPro by integrating a newly developed
phenological model to predict flowering stages and a sclerotia germination module to improve disease risk forecasting.

RESULTS: A phenological model was developed using temperature and photoperiod as key predictors. The model achieved a
root mean square error (RMSE) of 3.83 days for predicting flowering stages (BBCH 58–70). A sclerotia germination model was
created, with 79% accuracy, incorporating mean maximum temperature and relative humidity as predictors. Integration of
these models into SkleroPro improved disease risk prediction, increasing accuracy from 39% to 66%. Sensitivity rose to 90%,
ensuring a low risk of underestimating disease outbreaks.

CONCLUSION: The enhanced SkleroPro model improves disease risk forecasting by identifying high- and low-risk windows for
fungicide application, reducing unnecessary treatments while maintaining effective disease control. This decision support tool
promotes sustainable winter rapeseed production. Themodel is currently undergoing further validation with the German Plant
Protection Services before being made freely available to farmers.
© 2025 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

Supporting information may be found in the online version of this article.
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1 INTRODUCTION
Winter rapeseed (Brassica napus L.) is a widely cultivated oilseed
crop across most European countries, and its growth is influenced
by a complex interplay of factors.1–3 Key determinants that influ-
ence its development include the cultivar's genetic traits, weather
conditions, and the prevalence of pests and diseases.4 Sclerotinia
stem rot, caused by the phytopathogen Sclerotinia sclerotiorum
(Lib.) de Bary, is a significant disease affecting various crops,
including winter rapeseed. In Germany, the incidence of Scleroti-
nia stem rot can result in yield losses of up to 30%.5 This pathogen
is well known for its extensive host range and its ability to persist
in soil as sclerotia for several years, making it a persistent threat to
agricultural productivity.6 Under suitable conditions, sclerotia ger-
minate forming apothecia, which produce ascospores. Following
successful infection of aerial plant parts by the airborne asco-
spores, the pathogen colonizes plant tissue, causing premature
flowering and wilting, leading to a significant reduction in crop
yield.7–9 Disease progression is influenced not only by weather

variables6,10 but also by differences in aggressiveness among
pathogen isolates, which can significantly affect the occurrence
and development of Sclerotinia stem rot.11 A single fungicide
application is typically recommended during early flowering, as
infection usually begins at petal fall when petals provide
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nutrient-rich sites for germinating ascospores,12,13 though root
infections may also occur.14

Decision support systems (DSSs) are valuable tools in modern
agriculture, providing farmers and agronomists with important
insights to make timely decisions.15–17 These systems integrate
diverse data sources, including weather data, information about
crop and field management practices and landscape data to sim-
ulate crop and disease development and perform pest risk assess-
ments. The adoption of DSSs can significantly enhance the
efficiency of crop management practices, reduce dependency
on chemical inputs, and mitigate the impact of diseases like Scler-
otinia stem rot.10,16,18 Because fungicide applications must be
made before symptoms appear, accurate timing is essential,
underscoring the importance of reliable forecasting models for
effective Sclerotinia management.19

Phenological models, which are integral components of crop
growth models, predict the timing of key developmental stages
and are critical for scheduling monitoring, fertilization and pest con-
trol measures.20,21 They ensure that protective measures are applied
during the most vulnerable stages of the crop, thereby enhancing
overall management effectiveness.22,23 Several models have been
developed describing the effect of temperature and photoperiod
on the phenological development of rapeseed.1,3,4,24,25 Despite the
availability of phenological models for winter rapeseed in
Germany,10,21,26 there are notable deficiencies: the data used for
these models date back to the late 1990s and early 2000s. Due to
changing climate conditions, Simonto-WR,27,28 widely used for pre-
dicting flowering stages, has shown a decline in predictive accuracy
in recent years. In addition, Simonto-WR also requires the user to
input the date of BBCH 55 growth stage, which may not always be
feasible in practice due to time, labor, or access constraints.
While modeling crop phenology is required for the identifica-

tion of vulnerable crop stages, developing models for the various
stages of the life cycle of S. sclerotiorum is equally important to
predict the pathogen's critical periods of activity. These models
can predict the germination of sclerotia and the subsequent
release of ascospores, which are responsible for initiating infec-
tions and serve as the primary inoculum source.29,30 The germina-
tion of sclerotia of S. sclerotiorum is influenced by environmental
factors such as temperature, humidity, and soil moisture, with
cool, moist conditions promoting the development of apothecia
and release of ascospores.6,30

Clarkson et al.6 developed a model for S. sclerotiorum infection
and disease development on lettuce quantifying the effects of
temperature, relative humidity and ascospore density. The
weather-based model of Willbur et al.31 was developed to assess
the risk of Sclerotinia apothecial presence in soybean whereas
that of Salotti and Rossi19 predicts Sclerotinia disease progress
on soybean and sunflower. However, forecasting diseases caused
by S. sclerotiorum remains challenging, as existing literature often
shows inconsistent associations between environmental and
agronomic factors and the various life stages of the pathogen.29

Koch et al.10 developed a forecasting model named SkleroPro,
which provides a regional assessment of the Sclerotinia stem rot
risk and recommendations for fungicide application based on a
cost–benefit analysis in Germany. This model calculates infection
hours critical for infection, defined by temperature and relative
humidity conditions in the plant canopy. However, the accuracy
of this model has declined in the recent years, limiting its practical
use (ZEPP and ISIP, 2019, pers. comm.). This decline likely stems
from a biological limitation in the model – sclerotia germination
is not considered, leading to possible overestimations when

conditions favored infection but viable inoculum was absent.
Assuming uniform inoculum presence across fields, especially
those with low or absent sclerotial populations, may not reflect
field reality and contribute to reduced model reliability.
Therefore, developing a more reliable phenological model

and improving Sclerotinia disease risk forecasting are crucial
for effective disease management. Our study aims to advance
the current SkleroPro model to support informed fungicide
application decisions by identifying high- and low-risk win-
dows for Sclerotinia stem rot during the flowering period of
winter rapeseed in Germany. We have addressed this con-
cern by:

• Developing a new phenological model to predict flowering
stages (BBCH 58–70);

• Integrating the newly developed phenological model into an
improved version of the SkleroPro forecasting system;

• Designing a new module within SkleroPro to predict sclerotia
germination and ascospore release;

• Validating the new phenological model and the sclerotia germi-
nation model using field data;

• Assessing the performance of the enhanced SkleroPro model
against disease monitoring data from 2020 to 2024.

2 MATERIALS AND METHODS
2.1 Data sources and preparation
2.1.1 Phenology data
We used phenology data recorded in the BBCH code scale32 for
1651 site-year combinations across Germany during the period
2020–2024 (Fig. 1). The dataset consisted of growth stages from
BBCH 50 to BBCH 80 along with the coordinates, cultivar and sow-
ing date. The data were sourced from the ISIP (German Informa-
tion System for Integrated Plant Production) monitoring
platform and field trial observations provided by the Plant

Figure 1. Map of Germany showing the BBCH monitoring sites (dots) for
the period 2020–2024. Each color represents a different year. Lat, latitude
(°N); Lon, longitude (°E).
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Protection Services from 12 German federal states.33 The data
collected under practical field conditions resulted in a total of
10 539 observations (1397 from the field trials and 9142 from
the monitoring data). Growth stages were assessed visually
every 7 days, recording the predominant BBCH stage in the field.
For 142 of these site-years during the period from 2020 to 2023,
25 plants per field were assessed, resulting in 25 BBCH values
per field.

2.1.2 Sclerotinia disease incidence monitoring data
Sclerotinia disease incidence (DI) data were assessed and col-
lected at plant growth stages 80–83 by seven German federal
states between 2020 and 2024 (Fig. 2), covering a total of
37 site-years (Supporting Information Table S1). DI was measured
as the percentage of infected plants in untreated field trials, focus-
ing on lesions present on the main stem, which are typically asso-
ciated with significant yield loss. In each trial, 100 plants were
assessed, with 25 plants examined per replicate across four

replicates. In some trials, two different cultivars were tested. Culti-
var effects were excluded from the analysis, as no site showed evi-
dence of tolerance to Sclerotinia infection.

2.1.3 Sclerotia germination experiments
To examine the effects of weather on sclerotia germination and
apothecia development, four depots (each with 100 sclerotia)
were established annually in late October from 2020 to 2023 near
the experimental winter rapeseed field on the Julius Kühn-
Institute (JKI) campus in Brunswick, Germany.11 A depot is a field
site where sclerotia are buried to monitor apothecia formation.
Spaced ∼500 m apart, depots used native soil without amend-
ments. Sclerotia were buried at 3 cm depth and left undisturbed.
Apothecia emergence was monitored from April to mid-June,
with 2–3 observations per week. Environmental data – soil tem-
perature and rainfall – were recorded every 30 min using a
weather data logger (Tinytag Plus 2-TGP-4020; Gemini Data Log-
gers Ltd, Chichester, UK).

Figure 2. Sclerotinia disease incidence (DI) data collected by seven German federal states between 2020 and 2024 from a total of 37 site-years. Each
panel represents a year and each dot represents a site. The colors represent the Sclerotinia DI (%), ranging from high incidence (red) to low (green).
Lat, latitude (°N); Lon, longitude (°E).
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2.1.4 Weather data
We obtained daily weather data from the German Weather Ser-
vice (DWD),34 interpolated over a 1 km × 1 km grid. The parame-
ters used for the study consisted of daily mean, minimum and
maximum air and soil temperature (Tmean, Tmin, Tmax, °C), precipi-
tation sum (in millimeters) and relative humidity (%).

2.2 Model development and validation
2.2.1 Phenological model
To predict phenological stages between BBCH 58 and BBCH 70, we
developed a new phenologymodel based on the approach by Sol-
tani and Sinclair35 using dailymean air temperature (°C) and photo-
period (in hours) for each site starting from 1 February of each year.
We calculated the photoperiod using R function ‘daylength’ from
package ‘Geosphere’, which computes day length based on lati-
tude and date.36

For each site, we calculated a daily temperature factor tempfun,
a three segment linear function with a scalar factor ranging from
zero to one, representing the curvilinear plant response to tem-
perature (Fig. 3).37,38 This function requires four parameters: base
temperature (TBD, °C), lower optimum temperature (TP1D, °C),
upper optimum temperature (TP2D, °C), and ceiling temperature
(TCD, °C). We calculated the daily photoperiod factor ppfun,
which quantifies the development response to photoperiod as a
value between zero and one, using a quadratic function adopted

from the DSSAT-CERES model.39 Tempfun and ppfun were calcu-
lated as in Eqns (1) and (2).

tempfun = f xð Þ=

0, if TBD ≥ T ≥ TCD
T−TBD

TP1D−TBD
, if TBD< T < TP1D

1, if TP1D ≤ T ≤ TP2D
TCD−T

TCD−TP2D
, if TP2D< T < TCD

8>>>>>><
>>>>>>:

ð1Þ

ppfun =
1− ppsen × CPP−PPð Þ2

� �
, if PP< CPP

1, if PP ≥ CPP

(
ð2Þ

where, PP is the daily photoperiod (in hours), CPP is the critical pho-
toperiod (in hours) abovewhich development proceeds without day
length effects, and ppsen is the photoperiod sensitivity coefficient.
We calculated the daily biological day (BD) as the product of

tempfun and ppfun (Eqn (3)), which was then summed up daily
to provide the cumulative biological day (CBD, Eqn (4)).

BD = tempfun × ppfun ð3Þ
CBDi = CBDi−1 + BDi ð4Þ

where CBD for day i is the sum of the daily BD and the CBD from
day i − 1. The product approach (Eqn (3)) accounts for the

Figure 3. Schema for the calculation of the cumulative biological day (CBD). The insets describe the tempfun (upper) and the ppfun (lower) functions.
TBD, base temperature (°C); TP1D, lower optimum temperature (°C); TP2D, upper optimum temperature (°C); TCD, ceiling temperature (°C); PP, daily pho-
toperiod (hours); CPP, critical photoperiod (hours); ppsen, photoperiod sensitivity coefficient; Daily Mean T (°C), daily mean temperature (°C); Daily Pho-
toperiod (h), daily photoperiod (hours).
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inhibition of development due to suboptimal temperatures and/or
photoperiod conditions.
We transformed CBD values into BBCH by using a double Gom-

pertz function (Eqn (5)) with four adjustable parameters:

BBCH = b + c−bð Þe−ea CBD−dð Þ ð5Þ

where BBCH = calculated BBCH stage, and a, b, c and d are func-
tion constants which are different for the two Gompertz functions.
The use of two Gompertz functions was intended to reflect the
distinct growth phases during phenological development.26

The first function (for CBD ≤ 22.5) models the rapid progression
from BBCH 58 to BBCH 65 (beginning of flowering to full bloom),
while the second function (for CBD > 22.5) captures the slower
development from BBCH 65 to BBCH 75 (full bloom to end of flow-
ering) (Supporting Information Fig. S1).
We tested sowing date effects on flowering onset but found no

significant correlation (Fig. S2), likely because flowering in winter
rapeseed is mainly driven by late winter and spring conditions.
The use of∼60 cultivars with differing growth dynamics may have
contributed to the lack of a clear sowing date effect. Therefore,
model computations began on 1 February of each year, regard-
less of sowing date.
We calibrated the model using BBCH data from 142 site-years

(2020–2023), based on detailed observations of 25 plants per field
to ensure accuracy. In contrast, ISIP monitoring data (2020–2024),
primarily collected for pest monitoring, included BBCH stages
estimated informally during routine observations. Consequently,
trial data were used for calibration, and ISIP data for validation.
Model parameters (TBD, TP1D, TP2D, TCD, CPP) were calibrated
using a grid search, systematically testing value combinations
within predefined ranges. For each combination, the model was
run across five-fold cross-validation subsets of the 142 site-years,
and root mean squared error (RMSE) was calculated between
observed and simulated BBCH stages. The parameter set yielding
the lowest average RMSE across folds was selected as optimal for
the model. Model validation involved comparing observed and
simulated BBCH stages and their corresponding dates from 1509
ISIP site-years, focusing on flowering stages (BBCH 58–70). In addi-
tion to RMSE, we computed the mean bias error (MBE) to quantify
systematic deviation and the coefficient of determination (R2) to
assess prediction accuracy.

2.2.2 Sclerotia germination model
We developed a weather-based model to predict daily sclerotia
germination rates based on the germination rates recorded at
the sclerotia depots. In addition to the weather parameters from
the weather data loggers, we used weather parameters from the
DWD.34 We calculated sums or averages depending on the vari-
ables for 3, 5 and 10 days before the date of observation, resulting
in a total of 45 potential predictors (Table 1).
We applied the Boruta algorithm,40 a random forest-based fea-

ture selection method41,42, to identify key predictors of sclerotia
germination. The variables deemed as ‘confirmed’ by the Boruta
algorithm were further refined using stepwise regression with a
generalized linear model (GLM) as implemented in the R function
stepAIC from the R package MASS.43 We fitted a binomial logistic
regression model with sclerotia germination as the outcome var-
iable and the weather variables selected from the stepAIC step as
predictors. We validated the model with five-fold cross-validation,

and assessed performance by calculating accuracy, sensitivity and
specificity from a confusion matrix, implemented using caret
package.44

To refine the accuracy of Sclerotinia infection predictions, we
recalibrated optimal temperature and relative humidity parame-
ters through a grid search optimization using 2019–2023 field
trial data. These parameters define optimal infection conditions
for calculating infection hours.10 We tested value combinations
within set ranges using five-fold cross-validation on 59 units
(site-cultivar), selecting the combination with the highest pre-
diction accuracy.

2.2.3 Incorporation of sclerotia germination model to the
SkleroPro
We incorporated the sclerotia germination module into the exist-
ing SkleroPro model10 (Fig. 4). The sclerotia germination module
is triggered when the phenology module predicts BBCH 58. From
this stage onwards till the end of the flowering period, ascospores
can infect plants via flower petals (Fig. 5). This module assumes
that sclerotia germination leads to the formation of apothecia
which release ascospores. Ascospores are assumed to be available
for potential infection and remain viable for up to 7 days, even
under suboptimal environmental conditions.6,45 Infection hours
are only calculated when viable ascospores are presumed pre-
sent. The model then proceeds as in the current version to guide
fungicide application based on economic damage thresholds.
Additionally, user-provided crop rotation data10 to help modulate
infection hour thresholds; shorter rotations with susceptible crops
lower the threshold, increasing infection risk by reflecting greater
sclerotia presence near the soil surface. Adjacent field effects were
excluded due to lack of spatial data.

Table 1. List of the total weather variables and the aggregated
derivatives used as potential predictors for the sclerotia germination
rate model

Variable (daily) Additional aggregates

Precipitation (mm) Sum and average for 10, 5 and
3 days

Precipitation-TT (mm) Sum and average for 10, 5 and
3 days

Mean air temperature (°C) Average for 10, 5 and 3 days
Mean air temperature (°C) Sum for 10, 5 and 3 days

(base = 5°C)
Soil temperature-TT (°C) Average for 10, 5 and 3 days
Soil temperature Sum for 10, 5 and 3 days

(base = 5°C)
Maximum temperature (°C) Average for 10, 5 and 3 days
Minimum temperature (°C) Average for 10, 5 and 3 days
Ambient relative humidity (%) Average for 10, 5 and 3 days
Number of days when air
temperature ≥ 5°C

Sum for 10, 5 and 3 days

Variables with the suffix ‘-TT’ correspond to measurements recorded
by the weather data logger, while those without the suffix represent
weather data obtained from the German Weather Service (DWD).34

All additional aggregates were calculated over the last 10, 5, and
3 days preceding the date of observation, either as cumulative sums
and/or averages. Combined with the daily variables, this resulted in
a total of 45 variables, all of which are present in Fig. 8.
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2.2.4 Validation of the improved SkleroPro
We validated the improved SkleroPro model using Sclerotinia DI
data from untreated fields, treating site-years with multiple culti-
vars as separate units for a total of 59 units across 37 site-years
(2019–2024). Based on consultations with German Plant Protec-
tion Services, we used a 20% DI threshold, representing the pro-
portion of plants with visible main stem infection linked to
significant yield loss. We calculated sensitivity (True Positive Rate)
and specificity (True Negative Rate) from predicted and observed
DI using a confusion matrix (Table 2). Treatment recommenda-
tions were considered only until the crop reached BBCH 70, as
later treatments do not reduce infection risk. A model output
exceeding the risk threshold indicates that environmental condi-
tions during flowering may result in DI surpassing 20% by harvest
time, potentially causing significant yield loss.

3 RESULTS
3.1 Phenology model
The CBD model achieved a RMSE of 3.83 for BBCH stages 58–70,
corresponding to an average prediction error of approximately

4 days (Fig. 6). The calibrated parameters for both the CBD
model and the Gompertz equation constants are presented in
Tables 3 and 4.
When comparing CBD and Simonto-WRmodels, the CBDmodel

showed a lower RMSE, higher R2, and minimal bias (Table 5). How-
ever, the gains in accuracy were minimal. While the improvement
in average error was modest, variability remained in the predic-
tions for both models (Fig. 6). Specifically, the CBD model showed
greater variability in predictions for BBCH 58 and BBCH 59. Con-
versely, the Simonto-WR model exhibited a delay in predictions
from BBCH 64 onwards, with simulated dates lagging behind
the observed dates.

3.2 Sclerotia germination model
The results of the sclerotia germination experiments are pre-
sented in Fig. 7, which shows that germination primarily occurred
between mid-April and late May, coinciding with periods of
increased rainfall and rising soil temperatures. The Boruta algo-
rithm identified ten weather variables as important predictors of
sclerotia germination (Fig. 8). Stepwise Akaike information crite-
rion (AIC) refinement further reduced these to two key variables:

Figure 4. Schema of the SkleroPro model (adapted from Koch et al.,10) with the new sclerotia germination module. Daily Mean RH (last 15 days), daily
mean relative humidity (%) from the previous 15 days; Daily Mean T max, daily mean maximum temperature (°C) from the last 3 days; T, hourly temper-
ature (°C); RH, hourly relative humidity (%); Rad, daily global radiation (W/m2); Prec, hourly precipitation (mm); Clima Cpy, microclimate in the canopy; RH-
Cpy, relative humidity in the canopy; T-Cpy, temperature in the canopy.
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mean daily maximum temperature over the last 3 days
(tmax_3d) and mean relative humidity over the last 15 days
(rhmean_15d). The logistic binomial model (Eqn (6)) classified
germination probability using a 0.5 threshold (Eqn (7)). The
model uses a binary classification where probabilities > 0.5
indicate sclerotia germination (1) and ≤ 0.5 indicate no germi-
nation (0). The final sclerotia germination model achieved an
overall accuracy of 79% (Table 6), with a sensitivity (True Posi-
tive Rate) of 85% and a specificity (True Negative Rate) of
71%. Underestimation occurred in 9% of cases (False Negative
Rate). The calibrated parameters for optimal temperature and
optimal relative humidity for Sclerotinia infection are pre-
sented in Table 7.

Germination Probability=
e−36:74−0:33 × tmax_3d+0:62 × rhmean_15d

1+e−36:74−0:33 × tmax_3d+0:62 × rhmean_15d

ð6Þ

Germination =
1, if Germination Probability > 0:5

0, if Germination Probability ≤ 0:5

� �
ð7Þ

3.3 Validation of the improved SkleroPro
Of the 59 units assessed across 37 site-years (2019–2024), ten
showed DI above 20%, 32 had no incidence, and 17 recorded DI
between 1% and 20% (Table S1). Disease pressure peaked in
2022, with nearly 40% of units exceeding the 20% DI threshold,
whereas in 2020 no units surpassed this level.
The improved SkleroPro model predicted Sclerotinia infection

using a DI threshold of 20%, achieving an overall accuracy of
66% for the period 2020–2024, compared to 39% for the current
SkleroPro model (Table 8 and Fig. 9). The enhanced version
reduced the overestimations from 58% to 32% and the underesti-
mation from 4% to 2%. The model correctly identified infection
cases with a sensitivity (True Positive Rate) of 90%, while specific-
ity (True Negative Rate) was 61% (Table 9). Overestimation of
infection occurred in 32% of the sites, while underestimation
(False Negative Rate) was observed in only one site in 2021. The
model prediction results for units across all site-years are pre-
sented in Table S2. A comparison between the current, the
improved SkleroPro (with the CBD model) and the version keep-
ing the Simonto-WR model is presented in Table S3.

Figure 5. Life cycle of Sclerotinia sclerotiorum and infection of winter rapeseed. Created with BioRender.com.
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4 DISCUSSION
In this study, we developed a phenology model for winter rape-
seed that predicts flowering stages starting from 1 February. The
model demonstrated high predictive accuracy with an RMSE of
3.83 days and an R2 of 90%, outperforming several existing
models.2,3,21,25 Validated over 5 years across a range of environ-
mental conditions and 60 cultivars in Germany, it proved broadly
applicable. However, inaccuracies around BBCH stage 58, which
triggers the SkleroPro risk prediction model for Sclerotinia stem
rot, resulted in a ±4-day uncertainty window (Fig. 6). This may
lead to premature fungicide applications or missed treatment
windows, affecting disease control. While CBD and Simonto-WR
models showed comparable accuracy, our model's advantage lies
in usability by eliminating the need for BBCH 55 input, which in
the case of Simonto-WR may be impractical due to time, labor,
or access constraints.
Despite its general applicability, the CBD model's uncertainty

arises from genetic diversity among cultivars, which may vary in
their development rates.
A notable advancement in our study is the integration of a scle-

rotia germination model into SkleroPro. The previous version only
assessed infection conditions, whereas our improved version first
verifies whether sclerotia have germinated and ascospores are
available for infection. The sclerotia germination prediction

achieved an accuracy of nearly 80%, although this accuracy is
based on internal cross-validation and further independent vali-
dation is required. Predictors for the germination model – mean
maximum temperature over 3 days and mean relative humidity
over 15 days – capture key environmental conditions that influ-
ence germination. Short-term warming promotes metabolic
activity and apothecia development, while longer humidity

Table 2. The confusionmatrix used for validating the new SkleroPro
model.

Disease
incidence (%)

Treatment
recommendation
(until BBCH 70)

No treatment
recommendation
(until BBCH 70)

≥ 20 Correct Underestimation
<20 Overestimation Correct

Figure 6. Model performance comparison between cumulative biological day (CBD) and Simonto-WR. The x-axis depicts the difference in days between
the observed and predicted dates for the individual BBCH stages (y-axis) for both models. Each point represents a site-year and is categorized based on
the prediction accuracy into fast (blue, > 3 days), good (green, between 3 and −3 days) and slow (red, < −3 days). The points are overlaid with box-plots
for each BBCH stage.

Table 3. List of parameters for the tempfun and ppfun functions
used in the cumulative biological day (CBD) model and their cali-
brated values

Parameter Range Source Calibrated

TBD (°C) 0–6 2,4,21,26 0
TP1D (°C) 20–22 3,4,26 20.5
TP2D (°C) 25 4 25
TCD (°C) 35–40 4,26 35
CPP (h) 11–18 21,24,35 18
ppsen 0.0021 4 0.0021

Abbreviations: TBD, base temperature (°C); TP1D, lower optimum
temperature (°C); TP2D, upper optimum temperature (°C); TCD, ceil-
ing temperature (°C); CPP, critical photoperiod (hours); ppsen, photo-
period sensitivity coefficient.

Table 4. The calibrated constants for the double Gompertz function
used in the cumulative biological day (CBD) model

a1 −0.25 b1 50.66 c1 66.12 d1 15.96
a2 −0.10 b2 63.15 c2 76.22 d2 31.00

Constants with subscript 1 correspond to the first Gompertz function
(CBD values ≤ 22) while constants with subscript 2 correspond to the
second Gompertz function (CBD values > 22).
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periods sustain moisture for successful germination.6,11,49 The use
of relative humidity is supported by existing literature demon-
strating its strong influence on apothecial development and asco-
spore discharge,6,7,19,45 and can be viewed as an integrative
variable representative of moisture in the canopy microclimate.31

Although sclerotial germination may begin prior to full canopy
closure, in practice, germination and subsequent apothecia and
ascospore production are commonly observed during the flower-
ing stage, aligning with increasing precipitation and rising soil
temperatures.

Integrating this germination model into SkleroPro improved
disease risk prediction. Between 2020 and 2024, the model
increased the accuracy of the previous version from 39% to 66%
(Table 8 and Fig. 9). Since CBD and Simonto-WR models per-
formed similarly, the improvement is primarily due to the inclu-
sion of the germination and ascospore availability module.
While this improvement is significant, accuracy remains moderate
and varied across years, with particularly low performance in
2024. The high rate of overestimations in 2024 was likely due to
an unusually early flowering period in Germany caused by warm
March temperatures, followed by a sudden temperature drop in
April. Although late April conditions favored Sclerotinia develop-
ment, the early flowering caused the flowering period to conclude
before optimal infection conditions were met, leading to a tempo-
ral mismatch between the phenology and epidemiology modules.
Importantly, the model exhibited high sensitivity (90%), with only
one missed outbreak over 5 years. This ‘risk-averse’ behavior
ensures that nearly all significant Sclerotinia outbreaks are correctly
identified, which is critical for effective disease control. Similar to
other forecasting tools, such as the one developed by Young
et al.50 for the United Kingdom, the model overpredicts high-risk
scenarios as a precautionary measure, leading to a high number

Table 5. Comparison of the cumulative biological day (CBD) and
Simonto-WR phenology models based on three performance metrics:
root mean square error (RMSE), mean bias error (MBE) and the coeffi-
cient of determination (R2).

Metrics CBD Simonto-WR

RMSE 3.83 4.27
MBE −0.03 −0.06
R2 0.90 0.88

Figure 7. Field observations of sclerotia germination over 3 years: 2021, 2022, and 2023. Dark red bars indicate the sclerotia germination rate (%), while
the blue and green lines represent daily precipitation (mm) and soil temperature (°C), respectively, plotted by day of year (DOY) from late March to mid-
June. Precipitation and soil temperature were recorded daily, whereas sclerotia germination was assessed two to three times per week.
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of false positives where fungicide treatments are recommended
despite low actual infection risk. Low sclerotial density is an unlikely
explanation for overprediction, as the study fields had a documen-
ted history ofwinter rapeseed cultivation and Sclerotinia outbreaks,
indicating that sufficient inoculum was present for disease devel-
opment. The 20% DI threshold used in this study refers specifically
to Sclerotinia infections on themain stem, which are typically asso-
ciated with significant yield losses. This DI threshold was also
applied in the model developed by Shahoveisi and del Río Men-
doza51 to assess Sclerotinia incidence in winter rapeseed in North
Dakota.
The tendency to overpredict high-risk scenarios can be attrib-

uted to the complex interplay of environmental factors influenc-
ing Sclerotinia stem rot development. Disease forecasting

Figure 8. Classification of theweather variables by the Boruta algorithm. The variables are ranked from left to right in increasing order of importance. The box-
plots represent 500 simulations. The three importance categories, confirmed, tentative and rejected are represented by the green, yellow and red boxes, respec-
tively. The blue boxes represent the shadow parameters created by the model to check variable importance. All weather variables are presented in Table 1.

Table 6. Confusion matrix based on the prediction results of the
sclerotia germination model, absolute and percentage values in
brackets

Predicted

1 0

Observed 1 22 (46.8%) 4 (8.5%)
0 6 (12.8%) 15 (31.9%)

The total observations for sclerotia germination are 47, for one site in
Germany for the years 2019–2023.

Table 7. Calibrated optimal values of temperature and relative
humidity for Sclerotinia infection in winter rapeseed.

Parameters Range Source Calibrated

Optimal temperature for infection
(°C)

13–25 10,46,47 18

Optimal relative humidity for
infection (%)

85–99 10,48 90

Table 8. Comparison of model predictions (%) between the current
and the enhanced SkleroPro for each year

SkleroPro (current) SkleroPro (enhanced)

Year
Number
of sites

Correct
prediction (%)

Number
of sites

Correct
prediction (%)

2020 7 57 7 86
2021 15 13 15 40
2022 11 27 11 100
2023 11 55 13 69
2024 13 54 13 54
Total 57 39 59 66

The results comprise 37 site-years and 59 units (site-cultivar) for
5 years (2019–2024) in Germany.
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models rely on biological and meteorological variables like tem-
perature, soil moisture, relative humidity and photoperiod,9,52

which interact to influence crop phenology and the life cycle of
S. sclerotiorum.35 Warm and moist conditions promote apothecia
formation and ascospore release, while dry or cool conditions
inhibit these processes.30 Even when weather conditions are suit-
able for infection,microclimatic and structural barriers – like canopy
dryness or insufficient leaf wetness –may prevent infection,6 lead-
ing to further risk overestimation. Although soil moisture is crucial
for sclerotia germination, modeling it at scale remains challenging.
While some existing models incorporate soil moisture,19,31 we
developed a new model prioritizing practical use across large agri-
cultural areas by incorporating widely available rainfall data to cap-
ture moisture effects. Although photoperiod is relatively stable,
cooler spring weather can extend flowering and increase

susceptibility, whereas warm, dry conditions shorten the infection
window.53–55 Our long-term field monitoring confirmed that
apothecia can still develop after flowering, though such post-
flowering infections tend to be less severe.30 While we simplify this
complexity by focusing on temperature and humidity, the model
performswell across varied conditions, balancing biological realism
and operational simplicity for practical use in decision-support
tools.
Despite improvements in modeling Sclerotinia disease risk, chal-

lenges remain. Regional variability in environmental conditions –
such as air and soil temperature, humidity and rainfall – introduces
uncertainty, making it difficult to develop a universally applicable
model. High-risk conditions may be predicted, but disease may not
develop due to poor synchrony with flowering or limited spore load,
which may result from low sclerotial density in the soil.19 Our model

Figure 9. Validation results of the current (top) and improved (bottom) SkleroPro for the period 2020–2024. The x-axis represents the years. The y-axis
shows the percentages of prediction according to three categories: underestimated (red), overestimated (yellow) and correct (green). Value n represents
the total number of units used for validation.
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incorporates flowering phenology to align infection riskwith crop sus-
ceptibility, but some misalignment is still possible. Additionally,
pathogen-specific factors such as isolate aggressiveness may affect
disease development.56,57 Our previous studies8,30 observed signifi-
cant differences in infection severity among isolates, highlighting the
importance of isolate virulence. The current model is tailored for win-
ter rapeseed, which flowers from April to May in Germany – typically
aligning with favorable infection conditions. Applying the model to
spring oilseed rape, which flowers later under drier and warmer con-
ditions, would require further validation due to differing phenological
and climatic dynamics. Lastly, predictions over the course of yearsmay
also be affected by the crop's and pathogen's responses to climate
change, potentially altering their current optimal conditions and limit-
ing thresholds.35

Several strategies could improve the SkleroPro model's accu-
racy and applicability. While empirical models are simple and
user-friendly, they may oversimplify biological interactions. We
view the current version of SkleroPro as a step toward integrating
mechanistic or hybrid models that better capture host–pathogen
dynamics. Incorporating inoculum monitoring – such as spore
trapping or petal testing – could improve the model's ability to
distinguish between theoretical and actual infection risk.6,50,58

While most petals carry viable ascospores after release, infection
depends on environmental conditions and where petals land.
Petal testing, combined with environmental monitoring, can
therefore improve disease risk forecasting.

5 CONCLUSION
The enhanced SkleroPro model represents a notable advance-
ment in sustainable disease management for winter rapeseed,
enabling identification of high- and low-risk periods to guide fun-
gicide application decisions. Integration of phenology and sclero-
tia germination components has improved prediction accuracy
across diverse conditions. While around 30% of cases are still over-
estimated, further refinements could enhance specificity and user
acceptance. The model's accessible inputs and high sensitivity sup-
port effective disease control. Following a testing phase with the
German Plant Protection Service, it will be made freely available
to farmers across Germany. Although SkleroPro does not prescribe
specific spray schedules, its dynamic risk assessments help deter-
mine when treatment is justified during the flowering period. Con-
tinued validation will be essential to maintain performance under
changing climatic and agronomic conditions.
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